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Abstract

The Hough transform is a well known technique for detecting parametric curves
in images. We place a particular group of Hough transforms, the probabilistic Hough
transforms, in the framework of importance sampling. This framework suggests a way
in which probabilistic Hough transforms can be improved: by specifying a target dis-
tribution and weighting the sampled parameters accordingly to make identification of
curves easier. We investigate the use of clustering techniques to simultaneously identify
multiple curves in an image. We also use probabilistic arguments to develop stopping
conditions for the algorithm. The resulting methodology is called the Importance Sam-
pling Hough Transform (ISHT). We apply our method to both simulated and real data,
and compare its performance with that of two much used versions of the Hough trans-
form: the standard Hough transform and the randomized Hough transform. In our
experiments, it is more accurate than either of these common methods, and it is faster
than the randomized Hough transform.

KEY WORDS: Clustering, Importance sampling, Hough transform, Probabilistic Hough
transform, Target distribution.
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1 Introduction

The Hough transform is a well known technique for detecting parametric curves in images.
We place a particular group of Hough transforms, the probabilistic Hough transforms, in the
framework of importance sampling. This framework suggests a way in which probabilistic
Hough transforms can be improved: by specifying a target distribution and weighting the
sampled parameters accordingly to make identification of curves easier. We investigate the
use of clustering techniques to simultaneously identify multiple curves in the image. We also
use probabilistic arguments to develop stopping conditions for the algorithm. Results from
applying our method and two popular versions of the Hough transform to both simulated
and real data are shown.

1.1 Notation and Definitions

The Hough transform (Hough 1962), hereafter HT, is typically used to detect object bound-
aries in images. Before applying the HT to a particular image, the image must be transformed
by an edge detection algorithm into a binary edge detected image (also referred to as the
image space). An edge detection algorithm assigns each pixel to be a foreground pizel (edge
pizel), or a background pizel. In all the examples presented here the foreground pixels are
black and the background pixels are white. We will use the term points to refer to foreground
pixels and the term pizels to refer to foreground and background pixels. We define N to be
the total number of points in the image space.

In order to detect instances of a particular parametric curve in an image, one must decide
upon a parameterization of the curve. We will denote the curve parameterization by ©. The
dimension of the curve will be denoted by p. For instance, if a line is parameterized in
Cartesian coordinates, p = 2, and © = {m, ¢}, where m and ¢ are the slope and intercept of
the line, respectively.

Several of the HT's we discuss use an accumulator array to detect curves. An accumulator
array, denoted by A, is a discretization of the parameter space, ©. Each cell of A is used to
store votes for curves whose parameters are contained within the cell.

1.2 The Standard Hough transform

The standard HT (SHT) is a popular method for detecting parametric curves (lines, circles,
ellipses etc) in binary image data. Good introductions to the HT and surveys of the literature
can be found in Illingworth and Kittler (1988) and Leavers (1993). We will briefly describe
the SHT for line detection. Polar coordinates (p = z cosf + ysin §), are most often used to
parameterize lines (Duda and Hart 1972). Given this parameterization, the parameters of
all lines passing through a particular point (z',%’) in the image space form a sinusoid in the
parameter space. The standard HT for detecting lines proceeds by mapping each point in



the image space to its sinusoid in the discretized parameter space (the accumulator array,
A). Each cell in the accumulator array is incremented once for each sinusoid that passes
through it. A peak detection method, sometimes a simple threshold, is used to locate local
peaks in the accumulator array. The location of each peak gives the parameters of each
detected line.

1.3 The Randomized Hough transform

The main problems of the standard HT are its long computation times and large storage
requirements. The long computation times are caused by the fact that the HT increments
the cells in the accumulator array corresponding to all curves that pass through all points in
the image. Thus, much of the computation time is spent storing votes for curves with very
little support from the data. The storage requirements of the standard Hough transform
are a bigger problem though, since the size of the accumulator array is exponential in the
number of parameters. When the number of parameters is greater than two, the storage
space requirements become excessive.

A new class of HTs called probabilistic Hough transforms (PHTs) attempted to address
these problems by using random sampling of edge points, and many-to-one mapping of edge
points from the image space to the parameter space. The simplest PHT is the randomized
HT (RHT) due to Xu, Oja, and Kultanen (1990). Below we outline the RHT algorithm for
the general case of detecting all instances of a particular p-dimensional curve in a binary
image.

1. Create the set E of all edge points in the binary edge detected image.

2. Select p points, (eq,...,e,), at random from E.

3. Solve for the parameters (f) of the curve in the image space, defined by the selected
points.

4. Increment the appropriate cell, A(#), in an accumulator array.

5. If the A(f) exceeds a predefined threshold ¢, then the curve parameterized by 6 is
detected. When this happens, the points that lie on the curve are removed from F
and the accumulator array is re-initialized.

6. Regardless of whether a curve is detected, check whether or not a stopping condition
is satisfied. If it is not, return to step 2.

The two main ingredients in this algorithm (and all PHTSs) are a sampling mechanism
(steps 2-3) and a peak detection method (steps 4-5).



The sampling mechanism defines a sampling distribution on the continuous parameter
space, ©. However, the sampling mechanism is discrete in nature, so we can view the
sampling mechanism as defining a discrete sample space {2 C ©, and a sampling distribution
(probability mass function), g(-), on Q. In the RHT, the sampling mechanism is the selection
of p points at random. Thus, if there are K = (]; ) p-tuples of points and 6; is the parameter

for the i"* p-tuple, then Q = {f,,...,0x} and the sampling distribution can be written as:

K
1 *
=1

If all the 6s are unique, then g¢(-) is a uniform distribution on €2, i.e.

* 1 *

Curves that are present in the image should correspond to regions in © that have relatively
large probability under g. The peak detection method of the RHT achieves this by grouping
sampled parameter values into cells in the accumulator array and comparing with a threshold.

Applying the RHT is not straightforward if the curve is nonlinear with respect to its pa-
rameters, in which case selecting p points does not necessarily uniquely define a p-dimensional
curve. An ellipse is an example of a curve that is nonlinear with respect to its parameters.
A solution to the problem of detecting ellipses within the framework of PHTs has been ex-
plored by McLaughlin (1998) (based on work by Yuen, Illingworth, and Kittler (1989) in a
non-PHT framework). In his method, three points are selected at a time. Estimates of the
tangents to the (possible) ellipse at these points are then calculated and used to interpolate
the center of the ellipse. Given the location of the ellipse center the remaining parameters
are easily determined.

A greater problem affecting the RHT is that its performance is poor when the image is
noisy or complex. New PHTs have been proposed to improve the performance of the RHT.
The simplest modification to the RHT is the RHT with point distance criterion (RHT_D).
In this HT, at each iteration, one point is sampled at random and then p — 1 points are
sampled uniformly from all points that are within certain a distance (greater than d,;, and
less than dy.;) of the first point. Sensible choices of dy;, and dp., lead to an increase in
the probability of sampling points on a curve present in the image.

Comparisons of various probabilistic (and non-probabilistic) HTs can be found in Kélvidinen,
Hirvonen, Xu, and Oja (1995) and Kélvidinen and Hirvonen (1997). These methods include
the RHT_D mentioned above, the Dynamic RHT, the Random Window RHT, the Window
RHT, the Connective RHT, and the Dynamic Combinatorial HT. Most of these modifica-
tions to the RHT attempt to improve the sampling distribution in various ways so that it is
more peaked around the parameters corresponding to the curves in the image, thus making



the subsequent process of peak detection easier. In some cases the distinction between the
sampling mechanism and peak detection method is blurred, e.g. in the DRHT where curves
are detected by an iterative process involving two RHTSs.

While all of these methods differ in the sampling distribution employed they all share two
common traits: (i) they all detect curves sequentially, and (ii) curves are detected when the
number of votes in a cell in the accumulator array exceeds a certain threshold, or in other
words, when a curve has been sampled a certain number of times. We see these as areas
where improvements can be made. When detecting curves sequentially, every time a curve
is detected the accumulator array is reset, thus discarding other curves that have already
been accumulated. When accumulating a curve in the accumulator array, typically no effort
is made to assess the “quality” of the entire curve. A practical consequence of this is that a
curve must be sampled many times to be detected.

In our approach we will use a criterion for judging the “quality” of a curve, and introduce
a technique that allows detection of multiple curves simultaneously. The form of this criterion
is suggested by considering the following question: “What distribution would I ¢deally wish
to sample from?” If we can define an ideal sampling distribution and obtain a sample from
g(+), then we can obtain a sample from the ideal distribution via the technique of importance
sampling.

In the following sections we introduce importance sampling and then show how it relates
to the HT. We present some simple rules-of-thumb for determining how many samples from
the sampling distribution are needed and suggest using clustering techniques to simultane-
ously identify curves. Results from applying these ideas to both simulated and real data are
shown, and our method is compared to two standard HTs.

2 The Importance Sampling Hough Transform

2.1 Importance Sampling

Importance sampling is a technique that can be useful when a sample from a particular
target distribution is desired but simulation from that distribution is not straightforward.
We will restrict our attention to the case where the target distribution is discrete and known
only up to a multiplicative scale factor.

Consider a discrete random variable, #, with probability mass function {=(6) : 0 € Q}
where € is the sample space of §. We wish to obtain a sample 61, ..., 07 from 7(-). We know
the form of 7(-) up to a scale factor, i.e.:

where the form of f(-) is known but the normalizing constant ¢ is unknown. We now assume
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that there exists a probability mass function g(-) (the sampling distribution or importance
sampling function) defined on € from which we can draw a sample, 61, ..., 6r. Each obser-
vation in this sample is then weighted as follows:

f(0:)/9(8:) .
S {f(6)/9(6;)}

These weights are called the importance weights. If a random (unweighted) sample from
the target distribution is required (e.g. for plotting purposes), then sampling/importance
resampling (SIR) (Rubin 1987) can be used. This consists of simply resampling the sampled
parameters, with replacement, with probabilities proportional to their importance weights.

w; =

2.2 The Algorithm

We now outline an algorithm for a new PHT that can be viewed in an importance sampling
framework. We call it the Importance Sampling Hough Transform (ISHT). The algorithm
to detect curves, parameterized by ©, in a binary edge detected image proceeds as follows.

1. Create the set E of all edge points in the binary edge detected image.

2. Define a target distribution f(#|F). This is a function that measures the “quality” or
“goodness-of-fit” of the curve given by 6, to the edge points E. For convenience we
shall write f(0).

3. Obtain a random sample, or batch, of parameters, {6y,...,07-}, of size T* from a
sampling distribution g(-).

4. For each sampled parameter, 6;, in the batch, calculate its importance weight as:
f(6:)
T~ :

Zj:l f (0]' )

(For simplicity we have assumed that g(-) is approximately uniform over its range and

thus does not appear in the above equation. See Sections 2.3 for discussion of the
implications of this assumption.)

i

5. Run a peak detection method on the weighted sample of parameters to identify the
curve parameters. Remove the points corresponding to each curve identified from FE.

6. Check whether or not certain stopping conditions have been satisfied. If not return to
step 3.

The four main components of this algorithm are: a sampling distribution, a target distri-
bution, a peak detection method, and suitable stopping conditions. Each of these components
is discussed below in greater detail.



2.3 Importance Sampling Distribution

Once a sampling mechanism is chosen it defines the importance sampling distribution, g(-).
As with all PHTSs, the sampling mechanism is vital to an efficient HT. If an image is moder-
ately complex (e.g. several curves present) then the simplest sampling mechanism (sampling
p points at random from the entire image) will rarely sample curve parameters. The easiest
modification to this sampling mechanism is to use the point distance criterion (see Section
1.3). However, even though this sampling mechanism is easy to implement, exact calculation
of g(-) is difficult. This is also true of more complex sampling mechanisms. In these cases we
make the simplifying assumption that the sampling distribution is approximately uniform
and therefore cancels from the calculation of the importance weights (i.e w; o< f(6;)). This
assumption has little effect on the performance of the Hough transform.

2.4 Target Distribution

The selection of a good target distribution is crucial to the success of the HT. A good target
distribution will have a large concentration of its mass on the parameters corresponding to
curves present in the image. The target distributions we consider are of the form:

f(0:) = B(6:) x (),

where (3(6;) is a measure of the number of points associated with the curve given by 6;, and
a(f;) is a measure of the goodness of fit of these points to the curve.

We considered several functions for 3(-).

1. B(6;) = n; X 1{n;>t,}, where n; is the number of points that lie on the curve given by
0;, and t, is a predefined threshold. If a(-) = 1, then this can be thought of as the
target distribution corresponding to the SHT.

2. B(0;) = Z;v:1 W (r;), where r; is the minimum distance from the j* point to the curve
given by 6;, and W (r;) is a weighting function.

This weighting function can be interpreted as a fuzzy membership function with mem-
bership radius R if W(0) = 1, W (r) decreases monotonically from 0 to R, and W (r) = 0 for
r > R (Han, Koczy, and Poston 1994). Natural choices for W (r) are:

1. Step-function:
1, 0<r<R
Wi(r) = { 0, else



2. Gaussian: Y
W(r):{ e/, 0<r<R

0, else

3. Linear:

W(r)z{ 1-r/R, 0<r<R

0, else

Note that for values of R between % and %, if one uses the Step weighting function then
B(6;) = Z;\;l W (r;) & n;, the number of points that lie on the curve .

The various goodness-of-fit criteria we considered were:

1. a(b;) = (n;/c;)¢, where n; is defined as above and where ¢; is the number of pizels that
lie on the curve. (G is a positive number. For G = 1, this is the proportion of pixels on
the curve that are points.

2. a(f;) = (pi/c;)¢. Each point within distance membership radius R of the curve is
projected onto the curve. The number of these projected points is p; and ¢; is defined
as above.

3. CM(@Z) = (pZ/CZ)G X 1{(pi/ci)c>ta}’ for some threshold ta.

All of the above criteria lie between 0 and 1. If G > 1 then it can be thought of as a
penalty term, penalizing “bad” curves. However if G < 1 then the goodness-of-fit of each
curve is boosted. The first goodness-of-fit criterion listed is very strict. It favors only “perfect
curves” whereas the second criterion allows variation around the curve. The last criterion
gives zero weight to curves that do not exceed a certain goodness-of-fit threshold.

Obviously there is a great variety of target distributions that can be used. The application
will play a large role in determining which target distributions are suitable.

2.5 Peak Detection in the Parameter Space via Clustering

Given a sample of parameters from the sampling distribution, and their importance weights,
a peak detection method must be used to determine the number of curves, and their pa-
rameters. This simultaneous detection of peaks in the parameter space can be thought of as
a clustering problem. We wish to partition the sampled parameters into spatially compact
groups, where each group represents possible parameters for a particular curve in the image.
The center of each group will be our estimate of the parameters for that curve. Of course
some sampled parameters do not correspond to any curve in the image. These parameters
can be thought of as noise. The number of these sorts of parameters in the sample will
depend on the efficiency of the sampling distribution. However, these parameters should all
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have low importance weights. They can be removed by thresholding the sample based on
the importance weights. Once these noise parameters are removed, the remaining sample
of parameters can be clustered using any one of numerous clustering methods. These range
from the simple k-means clustering (Hartigan 1975) (for a range of values of k) to more
complex hierarchical and model-based methods, such as MCLUST (Banfield and Raftery
1993; Fraley and Raftery 1998).

We will use a simple method similar in spirit to the peak detection method used in the
RHT. First, we threshold the sampled parameters based on their importance weights. Each
of the remaining parameters are assumed to be associated with a curve in the image. We then
place each parameter in a cell of an accumulator array (as in the RHT) and run a connected
components algorithm on the non-empty cells in the array. The parameters contained in
the cells associated with a particular connected component are assumed to be associated
with one curve in the image. We estimate the parameters of this curve by taking a weighted
average of all the parameters associated with the component (where the weights used are the
importance weights, w;). Choosing the cell size appropriately is necessary for the curves to
be detected accurately. This requirement is common to all PHTs proposed to date, though.

2.6 Stopping Conditions

One advantage of our approach over other PHTs is that the we do not have to sample the
points that lie on a curve many times in order to detect the curve. This is because our
algorithm incorporates a measure of the quality of each curve. As a result of this, simple
probabilistic arguments can be used to develop stopping conditions for the HT.

Our notation will be as follows. Let b be the number of batches currently processed,
T = bT™ be the total number of parameters sampled, and b, be the current number of
consecutive batches processed without detecting a single curve. Let the current number of
points in the edge set, E, be Nj.

We propose two different stopping conditions to determine if a sufficient number of pa-
rameters have been sampled from g¢(-). One condition is to stop the HT if the total number
of parameters sampled, 7', exceeds some threshold, T,,,,. An alternative rule is to stop the
HT if the number of consecutive batches processed without detecting a single curve, by, is
greater than some threshold, b7***. Of course if the number of remaining edge points becomes
zero (or undesirably low) then sampling should stop.

Stopping Condition 1: Total number of parameters sampled

The total number of parameters sampled, 7', will be sufficient if the probability of sampling
all curves present in the image at least once is high. We can write down this probability if
we have some idea of the number and size of the curves in the image. For example consider
an image containing M p-dimensional curves of n points each. Let py, y} be the probability
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of sampling p points all from a n point curve, given that the image contains a total of NV
points. The probability of having sampled all curves after 7" samples is:

]

Pr=1- i(—l)i1 (M> (1=ipmny )

This probability can be plotted as a function of 7" and can then be used to gauge what
would constitute a reasonable sample. Derivation of this probability can be found in Ap-
pendix 4.

If the sampling mechanism is simply sampling p points at random then
(3)

P{n,N} = m
P

If one uses the point distance criterion then this probability can be approximated by

~ 2y (21:11)
PnN} = N (]lel) .

Here n' is the expected number of points that would typically lie on a given curve that
would satisfy the point distance criterion given that the first point selected lies on that given
curve. Similarly N’ is the total number of points that typically satisfy the point distance
criterion given selection of the first point. This condition will result in a conservative stopping
condition (provided the guesses for M,n, and N are good). This is because the above
calculation does not take into account the fact that, as curves are detected and removed
from the image, the probability of detecting the remaining curves increases.

Stopping Condition 2: Number of batches processed since last detection

Consider the number of consecutive batches processed without detecting a single curve, by.
If this number is not zero, then we should cease sampling if the probability of not having
sampled a curve over these byT™* samples, given that one remains, is low. Call this probability
0. This can be calculated as follows:

§=(1—pmny)-

Sampling should stop if § is low enough (less than a predefined threshold dy, say), or
alternatively if:

1 log 6
bgzam _ 0g 0o

= — < by.
T*log(1 — p{n,Nb}) 0

12



Figure 1: Simulated 256 x 256 binary image containing 10 lines and 1% speckle noise.

This stopping condition is preferable to the first one, since it uses more information about
the current state of the HT (e.g. how many curves have been detected, which edge points
remain) and should result in a smaller sample size being needed. Discussion of the selection
of the batch size can be found in Section 4.

3 Examples

In this section we show some results obtained by applying our methods to both real and
simulated data. We compare our method (ISHT) to the popular randomized Hough trans-
form with point distance criterion (RHT_D), and to the original standard Hough transform
(SHT).

3.1 Simulated Data

We simulated a 256 x 256 binary image, containing 10 lines (see Figure 1). In this image
we randomly changed the color of each pixel with probability 0.01. The total number of
points in the image is 2809, while the total number of points associated with lines is 2192.
However, the probability of sampling a pair of points at random both from the same line is
only about 0.08.
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3.1.1 Implementation

For the ISHT, we chose the sampling distribution corresponding to the sampling mechanism
of the RHT with point distance criterion with d,,;, = 1, and d,,,; = 50, i.e. the two pixels
selected must be within 50 pixels of each other. The components of our target distribution
were given by:

e 3(6;) = Z;VZI W (r;), where W (-) is the Gaussian weighting function with R = 2, and
o=2.

o a(fi) = (pi/ci) X 1i(pi/ei)>0.5)-

This target distribution allows points within 2 pixels of the line to be associated with the
curve, but penalizes curves that do not have at least half as many points near the line as
pixels on the line. We used a peak detection method with an importance weight threshold
of zero. The cell size of the accumulator array (in {p, 8} notation) was 1.8 x 2. The batch
size was 50, and the HT was stopped if two consecutive batches failed to detect any curves.

For the RHT_D, we set the threshold to be 10 points, and used the same point distance
criterion as the ISHT above. We ceased sampling when the number of points remaining in
the image was less than 30% of the original total. The cell size of the accumulator array was
1.8 x 120—”0. When removing detected curves from the image we removed all points within a 3
pixel radius of the curves.

For the SHT, the threshold was set at 130 points. The cell size of the accumulator array
was 3.6 X 155. After thresholding the accumulator array (all cells below the threshold were
set to zero), we ran a connected components algorithm on the non-empty cells. The cell
with the most votes inside each connected component was identified as corresponding to a
curve present in the image. The parameters of the curve were given by the parameters of
the center of the cell. This curve identification procedure is similar to our ISHT clustering

algorithm.

3.1.2 Results

The lines detected by each method are shown in Figure 2. Each method detected all 10 lines
in the image with no false positives, but the three methods differed substantially in speed
and accuracy. Table 1 shows the run times of each method, and the mean squared errors for
p and 6.

In terms of accuracy, the ISHT was clearly the best. The MSE for p was nearly an order
of magnitude better for the ISHT than for the RHT_D, and two orders of magnitude better
than for the SHT. The MSE for 6 for the ISHT was 4 times lower than for either of the older
methods. The SHT was the fastest method, approximately 3 times faster than the ISHT,
which was an order of magnitude faster than the RHT_D. This is not too surprising given

14



(a) ISHT. (b) RHT_D.

(c) SHT.

Figure 2: Simulated data : The thin lines are the true lines, and the thick lines are the lines
detected by each algorithm.

15



Table 1: Simulated Data: Run times, and mean squared errors for each HT.
ISHT RHT_D SHT
Run Time (seconds) 4.73  44.64  1.770
MSE of p 0.061  0.362  5.293
MSE of 6 (x10°) 9.02 40.91  45.65

that the parameter space was of low dimension (high dimension adversely affects the SHT
more than the RHT), and that the image was complex (the complexity of the image affects
the RHT more than the SHT).

3.1.3 Stopping Conditions

For this example we used the stopping condition based on the number of consecutive empty
batches. Specifically, we stopped the ISHT when we had two empty batches, each of size
50 parameters. The final image, after the detected lines had been removed, contained 692
points. It would be interesting to calculate the probability of not detecting a line, given
that one existed, in these remaining 100 (50 x 2) samples. Suppose, for simplicity, that our
sampling mechanism, had been that of the RHT, and the undetected line contained 100
points. In this case, the probability of sampling two points on this line is:

e = ()

~ (n/N)?
= (100/692)*
= 0.02009.

Therefore the probability of not detecting the curve is:

Pr = (1—puny)'®

= (1-0.0209)'°
= 0.12.

This probability is low, although not very low. It suggests that maybe we should run our
HT longer. The alternative stopping condition, based on the total number of parameters
sampled, is more conservative. Figure 3 shows the probability of sampling all curves in
the image for a given total sample size, assuming there are either 10 or 20 lines in the
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Figure 3: Simulated Data: Probability of sampling all lines in the image by a given iteration,
assuming there are 10 or 20 lines in the image.

image (where each line is of size 256 points). The probability for both curves is high when
the number of parameters sampled is approximately 750. In this example we sampled 250
parameters in total, and we can see that the probability is only approximately 0.5. Since
we had detected all the curves in the image after 250 samples, it appears that this stopping
condition can be too conservative; however, it is a good rule of thumb for establishing an
upper bound for the number of parameters sampled.

3.2 Blood Cell Data

Figure 4 shows a 265 x 272 image of blood cells. The edge detected image, obtained via
a Sobel transform, is shown in Figure 5. The task of identifying each blood cell is not
straightforward. There are numerous blood cells in the image. All are roughly circular,
although not perfectly so, and several are occluded, either by other blood cells or by the
boundary of the image.

3.2.1 Implementation

We used the same circle parameterization for each HT, namely © = {r,a,b}, where r is
radius of the circle, and {a, b} is the row and column position of the circle center (all in
pixels).

For the ISHT, we chose a batch size of 200 samples. The sampling mechanism and
target distribution are the same as in the previous example. Again we clustered the sampled
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Figure 4: Light microscope image of red blood cells. Original image from The Image Pro-
cessing Handbook, (Russ 1999). Used with permission.

Figure 5: Blood cells - Edge detected image.



parameters after each batch using our peak detection method. The cell size used was (in
{r,a,b} notation) 0.8 x 11 x 11 and the sample was thresholded based on an importance
weight of 45. The ISHT was stopped if 4 consecutive batches detected no curves.

For the RHT_D, we set the threshold of the RHT_D to be 10 points, and used the same
point distance criterion as the ISHT above. The size of a cell in the accumulator array was
0.8 x 5 x 5. As in the previous example, we stopped sampling when the number of points
remaining in the image was less than 30% of the original total, and we used a 3 pixel radius
when determining which points should be removed after a curve had been detected.

In order to alleviate the severe storage requirements of the SHT once the number of
parameters reaches 3, as here with circles, we employed the Gerig-Klein modification to the
HT (Gerig and Klein 1986). This modified HT allows only one circle to be detected at each
given center. The reduces the accumulator array from a three-dimensional array to two
two-dimensional arrays. The cost is the inability to detect concentric circles. Of course in
this example that is a reasonable assumption.

3.2.2 Results

The final classifications for each method are shown in Figure 6. We considered 26 of the
blood cells in the image to be detectable. The number of cells correctly detected, along with
the run times, the number of false positives, and the number of duplicates are shown in
Table 2.

Table 2: Blood Cell Analysis.
ISHT RHT D SHT

Run time 44.90 263.6  138.9
Cells detected 21 23 20
Cells undetected 5 3 6
False positives 0 13 0
Duplicates 0 2 5

The ISHT detected 21 of the 26 blood cells, detected no false positives and no duplicates,
and had by far the shortest run time. The RHT D detected more blood cells (23), but also
detected 13 false positives. The SHT detected fewer blood cells (20), and also detected 5
duplicates. We can see by visually comparing the images in Figure 6 that the circles detected
by the ISHT fit the blood cells better. The ISHT did not detect several of the cells that are
not fully within the image, as well as the two partially occluded cells that are fully contained
within the image. However, with suitable modifications of the target distribution these cells
could conceivably be detected.
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(a) ISHT - All circles corresponding to sam-
pled parameters with positive importance
weight.

(c) RHT.D - Circles detected. (d) SHT - Circles detected.

Figure 6: Blood Cells: Circles Detected.
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4 Discussion

We have found importance sampling to be a natural framework with which to design, view,
and understand probabilistic Hough transforms. We feel that the notion of a target dis-
tribution, which defines an importance weight associated with every sampled parameter, is
fundamental to the successful implementation of a PHT. We investigated the feasibility of
detecting multiple curves from a given batch of sampled parameters. We found that sim-
ple clustering methods provided good identification of curve parameters, provided that the
sampled parameters not associated with curves present in the image were filtered out. The
removal of these “noise” parameters was achieved via a simple thresholding of the importance
weights. Probabilistic arguments can be used to determine reasonable stopping conditions
for PHTs.

As with most data processing algorithms, their successful implementation often depends
on correctly setting several tuning parameters. We feel that, depending on the given image,
the tuning parameters of the ISHT are reasonably intuitive to set. One parameter, the batch
size (if one is employing the second stopping condition) can affect the efficiency and accuracy
of the ISHT. If the batch size is too large, the increased efficiency of sampling from a smaller
pool of points is lost. Conversely, if the batch size is too small, curves may be detected after
only being sampled once, thus increasing the bias in the parameter estimates. One possible
way to avoid this problem is to use a small batch size, and employ an algorithm similar
to the Dynamic RHT. That is, for each detected curve, select all the points near the curve
and perform a refined HT on these points. This technique can be thought of as adaptively
sampling the parameter space, and it is of course not the only conceivable approach to take.

The importance sampling framework is broad enough to incorporate many of the benefi-
cial features of other existing PHTs. For example, we used a very simple sampling distribu-
tion, whereas one could use a more sophisticated sampling distribution, e.g. one based on the
Connective RHT. In addition, the identification of curves could be improved by incorporating
an adaptive sampling mechanism, such as in the Dynamic RHT. The main computational
burden of our approach over other PHTs is the evaluation of the target distribution. This
should be an O(N) operation, where N is the total number of points in the image. We feel
that the benefit of evaluating the quality of a curve far outweighs the cost of its computation.
In summary, we feel that importance sampling provides a framework in which different PHT's
can be understood, and which will be useful in guiding the design of better curve detection
methods.
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Appendix A: Calculation of the Probability of Detecting
All Curves

Given M events, Ay, ..., Ay_1, the probability of the union of all of these events can be
expressed in the following way:

PUM, A) = P(A)+...+P(Ay)
=D PN 4)))

+(=12{ ) P(A;NA; N AL}

1<j<k

+(=DM PN A4)

Now consider an image containing M p-dimensional curves of n points each. Assume a
sampling distribution, g(-), exists that enables one to select p points from the N total points
in the image.

Now consider a sampling scheme where, at each draw, the p points are sampled from
the NV total points using the sampling distribution. If, at a particular draw, all p points are
sampled from the same curve, we shall consider that curve to have been sampled. Define
Pin,n} to be the probability of sampling a curve at a particular draw (we assume for simplicity
this is the same for all curves).

Let A! be the event that the i curve has not been sampled after ¢ draws of p points
from the sampling distribution. Since each curve has n points and each sampled parameter
is drawn independently from g(-), we can write:

P(A)=(1 _p{n,N})t, fori=1,..., M.

Similarly P(Aj N A}) can be calculated as follows:

P(AiN AL = (P(4;NA4)))

1— P((A; N Aj)))

1— P((47)° U (45)9))

1— (P((47)°) + P((4))°) — P((A})° N (45)9)))"

J

o~ o~ o~ o~
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= (1-2-ppuy), foralli=1,...,M,j #i.

The term P((A;)° N (A])¢) is equal to zero since (A;)¢ and (4)¢) are mutually exclu-
sive (one cannot sample two curves at the same time). Similarly, the probability of the
intersection of all events can be written as:

P(NZL,AY) = (1= M- ppny)”-

Substituting these expressions into the first equation we find that the probability of not
sampling all curves at least once after ¢ samples have been drawn from g(-) is:

P(UM,AY = 3 (=1) () (1=ipam )"

- 7
=1

The probability of having sampled all curves after ¢t samples is simply this quantity
subtracted from 1.
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